Caratteristiche di un numero reale

Cos'è un numero? Bene dipende. Esistono diversi tipi di numeri, ognuno con le proprie proprietà particolari. Una sorta di numero, su cui statistica, la probabilità e gran parte della matematica si basa su, è chiamato un numero reale.

Per sapere cos'è un numero reale, faremo prima un breve tour di altri tipi di numeri.

Tipi di numeri

Per prima cosa impariamo a conoscere i numeri per contare. Abbiamo iniziato con la corrispondenza dei numeri 1, 2 e 3 con le dita. Quindi abbiamo continuato ad andare più in alto possibile, il che probabilmente non era così alto. Questi numeri di conteggio o numeri naturali erano gli unici numeri di cui eravamo a conoscenza.

Più tardi, quando si tratta di sottrazione, negativo sono stati introdotti numeri interi. L'insieme di numeri interi positivi e negativi è chiamato insieme di numeri interi. Poco dopo furono presi in considerazione numeri razionali, chiamati anche frazioni. Poiché ogni numero intero può essere scritto come una frazione con 1 nel denominatore, diciamo che i numeri interi formano un sottoinsieme dei numeri razionali.

instagram viewer

Il antichi greci realizzato che non tutti i numeri possono essere formati come una frazione. Ad esempio, la radice quadrata di 2 non può essere espressa come una frazione. Questi tipi di numeri sono chiamati numeri irrazionali. I numeri irrazionali abbondano, e in qualche modo sorprendentemente in un certo senso ci sono più numeri irrazionali che numeri razionali. Altri numeri irrazionali includono pi e e.

Espansioni decimali

Ogni numero reale può essere scritto come un decimale. Diversi tipi di numeri reali hanno diversi tipi di espansioni decimali. L'espansione decimale di un numero razionale sta terminando, come 2, 3.25 o 1.2342, o si sta ripetendo, come .33333.. . Oppure .123123123.. . Contrariamente a ciò, l'espansione decimale di un numero irrazionale è non-terminante e non ripetitiva. Possiamo vederlo nell'espansione decimale di pi. Esiste una stringa infinita di cifre per pi, e per di più, non esiste una stringa di cifre che si ripete indefinitamente.

Visualizzazione di numeri reali

I numeri reali possono essere visualizzati associando ciascuno di essi a uno del numero infinito di punti lungo una linea retta. I numeri reali hanno un ordine, il che significa che per ogni due numeri reali distinti possiamo dire che uno è maggiore dell'altro. Per convenzione, spostarsi a sinistra lungo la riga del numero reale corrisponde a numeri sempre più piccoli. Spostarsi a destra lungo la linea del numero reale corrisponde a numeri sempre più grandi.

Proprietà di base dei numeri reali

I numeri reali si comportano come gli altri numeri con cui siamo abituati. Possiamo aggiungerli, sottrarli, moltiplicarli e dividerli (purché non li dividiamo per zero). L'ordine di addizione e moltiplicazione non è importante, poiché esiste una proprietà commutativa. Una proprietà distributiva ci dice in che modo la moltiplicazione e l'addizione interagiscono tra loro.

Come accennato in precedenza, i numeri reali possiedono un ordine. Dati due numeri reali X e y, sappiamo che è vera solo una delle seguenti condizioni:

X = y, X < y o X > y.

Un'altra proprietà: completezza

La proprietà che distingue i numeri reali da altre serie di numeri, come i razionali, è una proprietà nota come completezza. La completezza è un po 'tecnica da spiegare, ma l'idea intuitiva è che l'insieme di numeri razionali ha delle lacune. L'insieme di numeri reali non ha spazi vuoti, perché è completo.

A titolo di esempio, esamineremo la sequenza dei numeri razionali 3, 3.1, 3.14, 3.141, 3.1415... Ogni termine di questa sequenza è un'approssimazione di pi, ottenuta troncando l'espansione decimale per pi. I termini di questa sequenza si avvicinano sempre di più a pi. Tuttavia, come abbiamo detto, pi non è un numero razionale. Dobbiamo usare numeri irrazionali per collegare i buchi della linea numerica che si verificano considerando solo i numeri razionali.

Quanti numeri reali?

Non dovrebbe sorprendere che ci sia un numero infinito di numeri reali. Questo può essere visto abbastanza facilmente se consideriamo che i numeri interi formano un sottoinsieme dei numeri reali. Potremmo anche vedere questo realizzando che la linea numerica ha un numero infinito di punti.

Ciò che sorprende è che l'infinito usato per contare i numeri reali è di un tipo diverso dall'infinito usato per contare i numeri interi. Numeri interi, numeri interi e razionali sono numericamente infiniti. L'insieme dei numeri reali è infinitamente numeroso.

Perché chiamarli reali?

I numeri reali prendono il loro nome per distinguerli da un'ulteriore generalizzazione del concetto di numero. Il numero immaginario io è definito come la radice quadrata di quella negativa. Qualsiasi numero reale moltiplicato per io è anche conosciuto come un numero immaginario. I numeri immaginari allungano decisamente la nostra concezione del numero, poiché non sono affatto ciò a cui abbiamo pensato quando abbiamo imparato a contare.

instagram story viewer